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This study presents the method to approach flutter derivatives (FDs) of bridge section from 

simulation method. The more challenging is the application the system identification method 

to extract FDs from the stochastic vibration technique via simulated buffeting responses for 

section model. The flow analysis includes the investigation on: the fluctuated wind velocities 

were simulated from target power spectrum, the buffeting responses of a bridge section model 

obtained from numerical dynamic solution at different mean wind speeds. Next, the gust 

responses data has been analysis by the system identification technique in extracting FDs and 

investigate the difficulties involved in this method are discussed. The time domain analysis of 

gust response, stochastic system identification is proposed to estimate two degree of freedom 

systems. Finally, some adverse effects of gust response data on the accuracy of these methods 

to obtain FDs was discussed and concluded. The result of the study can clarify the effects of 

turbulence on FDs and further apply to estimate FDs from response of full-scale under 

buffeting load. 
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1. INTRODUCTION 

For the slender and flexible structures, such as long-span cable supported bridges are very sensitive to 

wind excitation. Base on aerodynamic the flutter and buffeting is vital important problem of great concern. 

The predictions of flutter instability and buffeting response related to flutter derivatives (FDs). The 

wind-tunnel test is the best choice to identify FDs. There are two type techniques for identification FDs of 

bridge section model, such as force vibration technique, free vibration technique [1]. Force vibration approach 

is a reliable one but it requires sophisticated driving equipment, somewhat expensive and time consuming. 

Free vibration approach seems to be more tractable and widely adopted technique but the free vibration 

response need to use the system identification techniques to extract modal parameters. Various system 

identifications to extract FDs from wind-tunnel experiment were developed by many authors [2-5], and in 

these systems the buffeting force and their response consider as external noise so this cause more difficulties 

at high wind velocity and particularly appears turbulence.  

The regarding the turbulent effect on FDs was investigated by some authors. G. Bartoli and M. Righi 

[5] used CSIM is based on Sarkar MITD [3] to extract simultaneously all FDs from 2DOF (degree of 

freedom) section model. The conclusion is that identification of flutter derivatives in turbulent flow resulted 

satisfactory in spite of the difficulties encountered due to the process caused by the locally induced noise 

owing to signature of turbulence. The main reason is that, the CSIM is the deterministic system identification 

and the effects of turbulence are regarded as a more noisy-input signal to the system makes more problems in 

the identification process. N. Nikitas, J.H.G. Macdonal and J.B. Jakobsen [7] are employed to extract FDs 

from ambient vibration data from full-scale monitoring has been using more elaborate stochastic identification 

technique (CBHM) [6] and the study also illustrated the viability of system identification techniques for 

extracting valuable result from full-scale data. V. Boonyapinyo and T. Janesupasaeree [1] applied data-driven 

stochastic subspace identification technique (SSI-DATA in short) to extract the flutter derivatives of bridge 

deck from wind tunnel test under smooth and turbulent flow. The conclusion of this paper saying that the 

SSI-DATA can be used to estimate FDs from buffeting responses with reliable results and an advantage of 

stochastic system is that its considers the buffeting force and response like input instead of noise. So, the ratio 
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of signal to noise is not effect by wind speed and the flutter derivatives at high wind speeds are readily 

available. From these consideration it was bring to the idea for applying the stochastic system identification 

(SSI in short) to estimate the FDs from simulated gust responses of bridge deck.  

This study concentrates on the buffeting responses to obtain from the numerical method of bridge deck 

under fluctuated wind excitation. The turbulent wind speed was simulated from target given power spectrum. 

Afterward, the output only system identification SSI [8] has been applied to extract flutter derivatives. 

 

2. THEORITICAL BACKGOUND 

(1) Wind load on a line-like structure 

Wind flow consist of a mean time-invariant component in the along wind direction and a fluctuating 

(turbulence) component in each of the flow direction. The components of flow are defined as: along-wind 

involve mean time-invariant and horizontal fluctuation U(t)=U+u(t), and vertical fluctuating w(t). Diana 

(1986) [10] extended the quasi-steady theory by using the relative wind velocity (Vrel in short) in the 

calculation of the forces. The aerodynamic forces acting on the structure including three parts: drag, lift and 

aerodynamic moment, see fig. 1.   

 

 

Figure 1: Instantaneous velocity and deck motion 

 

From the quasi-steady theory and considering on the deck motion, the aerodynamic force per unit 

length can be express in the structural axis system as:  
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Where:  is the angle of attack, H is the deck height, B is the deck width, x is the horizontal displacement, y is 

the vertical displacement, CD(), CL(), CM() is the draft, lift and moment force coefficient respectively.  

Assume the fluctuating wind components and velocities of structure are small compared to mean 

velocity U, so the higher order terms will neglect. The resulting force contains a part of structural motion x(t) 
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dot and y(t) dot which is component of damping. These force due to self-excited force which is attributed to 

the aerodynamic damping.  

The equation of motion of bridge deck with 2 DOF: bending mode h and torsion mode  can be written as 

follow:  

 hhhh Lhhhm  ]2[ 2
...

  (5) 

   MI  ]2[ 2
...

 (6) 

where m and I is mass and mass moment of inertial per unit length; hh f 2  and   f2 is circular 

frequencies of heaving and pitching mode (in still air); h  and   is critical damping ratio; Lh (or Fy) and 

M is the lift force and pitching moment per unit length; and the dot denotes derivative with time.  

The lift and moment can be split into three parts: mean, buffeting and self-excited forces. By substituting the 

above equation Eq.2, Eq.3, Eq.4 into the Eq.5 and Eq.6, by moving the aerodynamic damping and stiffness 

terms to the left hand side Eq.5 and Eq.6 can be rewritten as follow:  

 )()}({)}(]{[)}(]{[)}(]{[ 2

...

tuBtftqKtqCtqM ee   (7) 

where {q(t)}={h(t)  (t)}
T
 = generalized buffeting response; {f(t)} = generalized static and buffeting force; 

{f(t)} is factorized into matrix B2 and input vector u(t); [M] = mass matrix; [C
e
] = gross damping matrix 

including the physical damping of structure and aerodynamic damping; [K
e
] = gross stiffness matrix. 

Solution the Eq.7 by the constant acceleration method (Newmark-) of numerical integration will 

obtain the buffeting response of bridge deck. 

 

(2) Stochastic state-space models 

The previous second-order of differential equation, Eq.7 is generalized n2-DOF can be transformed 

into a first-order the state equation Eq.8.  

          

)()()(

)(
0

)(

)(0

)(

)(
)(

.

2

1
.

11..

.

.
22222

tButxAtx

tu
BMtq

tq

CMKM

I

tq

tq
tx

c

xmn

nxn

ee

xnnxnn




























































 (8) 

The combination of the state equation and the observation equation fully describes the input and output 

behavior of the structural system and is as such named state-space system.  
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where Ac designated the state matrix is a n-by-n (n=2n2); x(t) is the state vector; B is the input matrix; Cc is the 

output and D is the direct transmission matrix at continuous time.  

In the modal analysis, sometime the input is unknown and measurements are mostly sampled at discrete-time. 

On the other hand, it is impossible to measure all DOFs and the last one, when measurements always have 

disturbance effects [8]. For all these reasons, the continuous deterministic system will be converted to suitable 

form: discrete-time stochastic state-space model as follow: 
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where xk=x(kt)=
T

kk qq }{
.

is the discrete-time state vector containing the discrete sample 

displacement qk and velocity kq
.

; wk is the process noise due to disturbances and modelling 
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inaccuracies; vk is the measurement noise due to sensor inaccuracy. Following assumption wk and vk is 

zero mean and with covariance matrix:  
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where the index p and q are time-instants; E is the expected value; pq is the Kronecker delta. As the 

correlation E(wp wq
T
) and E(vp vq

T
) are equal zero if different time-instant.  

Further the stochastic model is assumed that {xk}, {wk} and {vk} are mutual dependent: E(xk wk
T
)=0 

and E(xk vk
T
)=0. According to B. Peeters and G.D. Roeck [8] proven that the output covariance R=E[yk+i yk

T
] 

for any arbitrary time-lags it can be considered as impulse response (Eq.12) of the deterministic linear 

time-invariance system A, C, G; where G= E[xk+1 yk
T
] is the next state-output covariance matrix.   

  GCAR i

i

1  (12) 

Therefore, the theoretical application of stochastic system can go back to eigen-system realization algorithm 

(ERA) method in [9]. The classification of stochastic system identification based on the key step of these 

methods, by following [8] they are covariance-driven stochastic subspace identification (COV-SSI) and 

data-driven stochastic subspace identification (DATA-SSI).   

a) COV-SSI 

The heart of COV-SSI method is the ERA developed by Juang and Pappa [8]. It is the famous 

technique for modal parameter from free vibration response or impulse response. The key step in the COV-SSI 

system is the computation output covariance can be expressed assuming ergodicity process as:  

 
T

k

N

k

ik

T

k

N

k

ik
N

T

kki yy
N

yy
N

yyER 













 
1

0

1

0

1

11
][ lim  (13) 

where i time lag; N finite number of data  

All output covariance Ri in Eq.12 is stored in block Toeplitz matrix as: 
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Combination Eq.12, and Eq.14, then block Toeplitz matrix can be decomposed as following: 
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On the other hand, the observability matrix Oi and controllability matrix Ci can be obtained from singular 

value decomposition (SVD) of the Toeplitz matrix: 
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S is a diagonal matrix containing singular value. The numbers of non-zero give the rank of the decomposed 

matrix and coincide with the size n=2n2 of the state-space matrix A. Comparison the Eq.15 and Eq.16, we can 
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rewrite that:  
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Now the realization of all system matrixes A and C are achieved. The state matrix A can be obtained by 

decomposing a shift block Toeplitz matrix:  

 iii ACOT 1|2  (18) 

Combining Eq.17 and Eq.18 gives 
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where (.)
+ 

is the pseudo-inverse of a matrix. The output matrix C equals the first l rows of Oi, where l number 

of outputs (in this study l=2).   

b) Identification of flutter derivatives 

The modal parameters of system can be obtained by solving the eigenvalue problem state matrix A: 

   CA ;1
 (20) 

where  the complex eigenvector;  the complex eigenvalue is the diagonal matrix; Φ the mode shape matrix. 

When the complex modal parameters known, the gross damping C
e
 and gross stiffness K

e
 in Eq.8
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determined by following:    
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where C
0 
and K

0
 the mechanical damping and stiffness matrix of system under no-wind condition. 

Following E. Simiu and R.H. Scanlan [13], the aerodynamic self-excited force and moment given by: 
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where Ki=iB/U the reduce frequency (i=h, ); H
*
i and A

*
i (i=1,2,3,4) are the flutter derivatives.  

Substituting Eq.22 into Eq.7 and combining Eq.21, the flutter derivatives of two DOF can be defined as: 
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3. TURBULENT WIND FIELD SIMULATION 

Investigation on the aerodynamic bridge response in the time domain, turbulent wind field is obtained 

by simulation method first. The time histories of fluctuating wind velocity was generated from the target 

Kaimal’s power spectral density (PSD) of horizontal and vertical fluctuating wind Eq.24    
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where Su,w(n) is the PSD of longitudinal and vertical velocity fluctuations u and w; n the frequency; u the 

standard deviation of u; and f=nz/U: reduced frequency, and z: the reference height. 

The generated wind velocity fluctuations are illustrated in Fig.2, fluctuated time series data and Fig.3, 

generated power spectrums and target spectrums. 

  

  

Figure 2: Longitudinal wind 

      Generated fluctuation wind velocity (upper)  

      Spectra of generated series and target (lower) 

Figure 3: Vertical wind 

       Generated fluctuation wind velocity (upper)  

       Spectra of generated series and target (lower) 

 

4. NUMERICAL SIMULATION RESULS 

(1) White noise excitation 

To verify the proposed method for identifying FDs, the response time-series of section model excited 

by lift and moment white-noise was computed by numerical integration method. The section model properties 

assumed following (Jakobsen and Hjorth-Hansen, 1995) [6]: fh=1.947 Hz; f=5.76 Hz; logarithm decrements 

h=0.035 and a=0.033. The mean wind speed U=10.26 m/s, air density 1.181 kg/m
3
. The effective stiffness 

and damping were pre-set at: 
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The SSI method applied to these response data and obtained the effective structural matrix and the deviation 

of identified matrices from the pre-set ones: 
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The results are plausible to compare with the pre-set values. The maximum differences in the off-diagonal 

term C12 around 26%, this parameter related to H2
*
, but the magnitude value quite small so the effect is trivial.  

 

(2) Buffeting excitation 

The buffeting response obtained by following the procedure in section 2.1 with different mean wind 

speed. Assuming the section prototype parameters per unit length of prototype bridge are following: mass is 

4300 kg/m; mass moment of inertia 4.11x10
4
 kg.m

2
/m; the width of deck B is 30m; the height of deck is 3.2m; 

vertical mode frequency fh=0.15Hz; torsional mode frequency fHz; vertical damping ratio h=0.15; 

torsional damping ratio =0.25. 

The vertical and torsional responses were obtained at mean wind speeds varying from 10m/s to 90m/s and 

added turbulent of along and vertical wind. The buffeting responses were simulated at a sampling frequency of 

20Hz. Fig.4 shows the simulated buffeting responses of two DOFs by numerical integration with constant 

acceleration method at mean wind speed U=10m/s. 

 

Figure 4: Buffeting response vertical displacement (upper), torsional displacement (lower)) 

  

  

Figure 5: Vertical flutter derivatives and three order fitted polynomial, indicated by solid line 
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In this study, the actual model order is known and is equal to the order of state matrix A (=4) and also number 

of out-puts equal two (h and ). In order to extract the FDs, the SSI technique a computer program developed 

in Matlab’s program following the procedure mention in section 2. From the eigenvalue and mode shapes, the 

effective damping and stiffness were determined from Eq.21 and physical matrices, the values of all FDs at a 

particular wind speed were obtained following Eq.23. Fig.5 and Fig.6 shows the FDs values at discretely 

located of each parameter respect to reduce wind speed and also the three order polynomials are depicted as 

continuous curves. 

  

  

Figure 6: Torsional flutter derivatives and three order fitted polynomial, indicated by solid line 

 

Identifying flutter derivatives of prototype section under turbulent wind has been hard work; the results 

H1
*
 and A1

*
 is plausible. As can be seen from the chart, the H1

*
 derivative trend intended to larger negative 

with increase reduce wind speed, this indicated aerodynamic damping in vertical bending vibration is positive.   

A4
*
 shows small scatter and changes trend at high reduce wind speed. The H2

*
, H3

*
 derivatives, which control 

the coupling from torsional to vertical have very small value. The A2
*
, A3

*
 derivatives, which related to 

aerodynamic torsional stiffness and torsional damping is also small.   

 

5. CONCLUTIONS 

These research attempts to apply the stochastic system identification method have been determined 

flutter derivatives of two DOFs system. The method uses only out-put from buffeting responses data. The 

flutter derivatives H1
*
 and A1

*
 are plausible, but the coupling term between the torsional and vertical mode 

H2
*
, H3

*
 derivatives are quite small. The aerodynamic effected on torsional mode A2

*
 and A3

*
 derivatives are 

also small. Extraction the FDs from buffeting of the prototype bridge is more challenging and the errors in the 

values may be attributed to the stochastic method itself. The authors will effort to minimize the errors by 

adopting better signal processing technique. The results show the potential to extract FDs from ambient 

vibration data on full-scale bridge. 
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